29 research outputs found

    Nonlinear Control Strategies for Outdoor Aerial Manipulators

    Get PDF
    In this thesis, the design, validation and implementation of nonlinear control strategies for aerial manipulators {i.e. aerial robots equipped with manipulators{ is studied, with special emphasis on the internal coupling of the system and its resilience against external disturbances. For the rst, di erent decentralised control strategies {i.e. using di erent control typologies for each one of the subsystems{ that indirectly take into account this coupling have been analysed. As a result, a nonlinear strategy composed of two controllers is proposed. A higher priority is given to the manipulation accuracy, relaxing the platform tracking, and hence obtaining a solution improving the manipulation capabilities with the surrounding environment. To validate these results, thorough stability and robustness analyses are provided, both theoretically and in simulation. On the other hand, a signi cant e ort has been devoted to improving the response and applicability of robot manipulators used in ight via control. In particular, the design of controllers for lightweight exible manipulators {that reduce the consequences of incidents involving unforeseen contacts{ is analysed. Although their inherent nature perfectly ts for aerial manipulation applications, the added exibility produces unwanted behaviours, such as second-order modes and uncertainties. To cope with them, an adaptable position nonlinear control strategy is proposed. To validate this contribution, the stability of the approach is studied in theory and its capabilities are proven in several experimental scenarios. In these, the robustness of the solution against unforeseen impacts and contact with uncharacterised interfaces is demonstrated. Subsequently, this strategy has been enriched with {multiaxis{ force control capabilities thanks to the inclusion of an outer control loop modifying the manipulator reference. Accordingly, this additional applicationfocused capability is added to the controlled system without loosing the modulated response of the inner-loop position strategy. It is also worth noting that, thanks to the cascade-like nature of the modi cation, the transition between position and force control modes is inherently smooth and automatic. The stability of this expanded strategy has been theoretically analysed and the results validated in a set of experimental scenarios. To validate the rst nonlinear approach with realistic outdoor simulations before its implementation, a computational uid dynamics analysis has been performed to obtain an explicit model of the aerodynamic forces and torques applied to the blunt-body of the aerial platform in ight. The results of this study have been compared to the most common alternative nowadays, being highlighted that the proposed model signi cantly surpasses this option in terms of accuracy. Moreover, it is worth underscoring that this characterisation could be also employed in the future to develop control solutions with enhanced rejection capabilities against wind conditions. Finally, as the focus of this thesis is on the use of novel control strategies on real aerial manipulation outdoors to improve their accuracy while performing complex tasks, a modular autopilot solution to be able to implement them has been also developed. This general-purpose autopilot allows the implementation of new algorithms, and facilitates their theory-to-experimentation transition. Taking into account this perspective, the proposed tool employs the simple and widely-known MAS interface and the highly reliable PX4 autopilot as backup, thus providing a redundant approach to handle unexpected incidents in ight.En esta tesis se ha estudiado el diseño, validación e implementación de estrategias de control no lineales para robots manipuladores aéreos –esto es, robots aéreos equipados con un sistema de manipulación robótica–, dándose especial énfasis a las interacciones internas del sistema y a su resiliencia frente a efectos externos. Para lo primero, se han analizado diferentes estrategias de control descentralizado –es decir, que usan tipologías de control diferentes para cada uno de los subsistemas–, pero que tienen indirectamente en consideración la interacción entre manipulación y vuelo. Como resultado de esta línea, se propone una estretegia de control conformada por dos controladores. Estos se coordinan de tal forma que se le da prioridad a la manipulación sobre el seguimiento de posiciones del vehículo, produciéndose un sistema de control que mejora la precisión de las interacciones entre el sistema manipulador y el entorno. Para validar estos resultados, se ha analizado su estabilidad y robustez tanto teóricamente como mediante simulaciones numéricas. Por otro lado, se ha buscado mejorar la respuesta y aplicabilidad de los manipuladores que se usan en vuelo mediante su control. Dentro de esta tendencia, la tesis se ha centrado en el diseño de controladores para manipuladores ligeros flexibles, ya que estos permiten reducir el peso del sistema completo y reducen el riesgo de incidentes debidos a contactos inesperados. Sin embargo, la flexibilidad de estos produce comportamientos indeseados durante la operación, como la aparición de modos de segundo orden y cierta incentidumbre en su comportamiento. Para reducir su impacto en la precisión de las tareas de manipulación, se ha desarrollado un controlador no lineal adaptable. Para validar estos resultados, se ha analizado la estabilidad del sistema teóricamente y se han desarrollado una serie de experimentos. En ellos, se ha comprobado su robustez ante impactos inesperados y contactos con elementos no caracterizados. Posteriormente, esta estrategia para manipuladores flexibles ha sido ampliada al añadir un bucle externo que posibilita el control en fuerzas en varias direcciones. Esto permite, mediante un único controlador, mantener la suave respuesta de la estrategia. Además cabe destacar que, al contar esta estrategia con un diseño en cascade, la transición entre los segmentos de desplazamiento del brazo y de aplicación de fuerzas es fluida y automática. La estabilidad de esta estrategia ampliada ha sido analizada teóricamente y los resultados han sido validados experimentalmente. Para validar la primera estrategia mediante simulaciones que representen fielmente las condiciones en exteriores antes de su implementación, ha sido necesario realizar un estudio mediante mecánica de fluidos computacional para obtener un modelo explícito de las fuerzas y momentos aerodinámicos a los que se efrenta la plataforma en vuelo. Los resultados de este estudio han sido comparados con la alternativa más empleada actualmente, mostrándose que los avances del método propuesto son sustanciales. Asimismo, es importante destacar que esta caracterización podría también usarse en el futuro para desarrollar controladores con una respuesta mejorada ante perturbaciones aerodinámicas, como en el caso de volar con viento. Finalmente, al ser esta una tesis centrada en las estrategias de control novedosas en sistemas reales para la mejora de su rendimiento en misiones complejas, se ha desarrollado un autopiloto modular fácilmente modificable para implementarlas. Este permite validar experimentalmente nuevos algoritmos y facilita la transición entre teoría y práctica. Para ello, esta herramienta se basa en una interfaz sencilla ampliamente conocida por los investigadores de robótica, Simulink®, y cuenta con un autopiloto de respaldo, PX4, para enfrentarse a los incidentes inesperados que pudieran surgir en vuelo

    High-Level Modular Autopilot Solution for Fast Prototyping of Unmanned Aerial Systems

    Get PDF
    Article number 9291382A redundant fast prototyping autopilot solution for unmanned aerial systems has been developed and successfully tested outdoors. While its low-level backbone is executed in a Raspberry Pi R 3 + NAVIO2 R with a backup autopilot, the computational power of an Intel R NUC mini-computer is employed to implement complex functionalities directly in Simulink R , thus including in-flight debugging, tuning and monitoring. Altogether, the presented tool provides a flexible and user-friendly high-level environment with enhanced computational capabilities, which drastically reduces the prototyping timespans of complex algorithms –between 50% and 75%, according to our long and proven experience in aerial robotics–, while preventing incidents thanks to its redundant design with a human-in-the-loop pilot on the reliable PX4. Three typical outdoor cases are carried out for validation in real-life scenarios, all mounted in a DJI c F550 platform. Full integration results and telemetry for more than 50 hours of outdoor flight tests are provided.Ministerio de Economía, Industria y Competitividad DPI2017-89790-RPrograma Horizonte 2020. Unión Europea 779411Programa Horizonte 2020. Unión Europea 87147

    Multi-GPU Development of a Neural Networks Based Reconstructor for Adaptive Optics

    Get PDF
    Aberrations introduced by the atmospheric turbulence in large telescopes are compensated using adaptive optics systems, where the use of deformable mirrors and multiple sensors relies on complex control systems. Recently, the development of larger scales of telescopes as the E-ELT or TMT has created a computational challenge due to the increasing complexity of the new adaptive optics systems. The Complex Atmospheric Reconstructor based on Machine Learning (CARMEN) is an algorithm based on artificial neural networks, designed to compensate the atmospheric turbulence. During recent years, the use of GPUs has been proved to be a great solution to speed up the learning process of neural networks, and different frameworks have been created to ease their development. The implementation of CARMEN in different Multi-GPU frameworks is presented in this paper, along with its development in a language originally developed for GPU, like CUDA. This implementation offers the best response for all the presented cases, although its advantage of using more than one GPU occurs only in large networks

    Using feedback from summer subtropical highs to evaluate climate models

    Get PDF
    This letter aims to broaden the spectrum of methods for model evaluation by providing new physically based metrics that focus on accurate couplings between subsystems of the climate system. A simplified version of the feedback scheme that describes the dynamics of subtropical high-pressure systems is applied to evaluate how well CMIP5 climate models can simulate atmosphere–ocean–land interactions and resulting feedbacks in the Azores high-pressure system during summer, which affects climate throughout the Atlantic near southern Europe and North Africa

    Physically based evaluation of climate models over the Iberian Peninsula

    Get PDF
    A novel approach is proposed for evaluating regional climate models based on the comparison of empirical relationships among model outcome variables. The approach is actually a quantitative adaptation of the method for evaluating global climate models proposed by Betts (Bull Am Meteorol Soc 85:1673–1688, 2004). Three selected relationships among different magnitudes involved in water and energy land surface budgets are firstly established using daily re-analysis data. The selected relationships are obtained for an area encompassing two river basins in the southern Iberian Peninsula corresponding to 2 months, representative of dry and wet seasons. The same corresponding relations are also computed for each of the thirteen regional simulations of the ENSEMBLES project over the same area. The usage of a metric based on the Hellinger coefficient allows a quantitative estimation of how well models are performing in simulating the relations among surface magnitudes. Finally, a series of six rankings of the thirteen regional climate models participating in the ENSEMBLES project is obtained based on their ability to simulate such surface processes.The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged by the authors of the paper, without these data it would have been imposible to write this article

    Automatic classification of steel plates based on laser induced breakdown spectroscopy and support vector machines

    Get PDF
    Welding processes are one of the most widely spread industrial activities, and their quality control is an important area of research. The presence of residual traces from the protective antioxidant coating, is a problematic issue since it causes a significant reduction in the welding seam strength. In this work, a solution based on a Laser Induced Breakdown Spectroscopy (LIBS) setup and a Support Vector Machines (SVMs) classifier to detect and discriminate antioxidant coating residues in the welding area without destroying the sample before the welding procedure is proposed. This system could be an interesting and fast tool to detect aluminium impurities

    Proposals of metrics for a more physical evaluation of climate models

    Get PDF
    Presentación realizada en: 15th Annual Meeting of the European Meteorological Society (EMS) /12th European Conference on Applications of Meteorology (ECAM) celebrado en Sofía, Bulgaria del 7 al 11 de septiembre de 2015

    Experience with Artificial Neural Networks Applied in Multi-object Adaptive Optics

    Get PDF
    The use of artificial Intelligence techniques has become widespread in many fields of science, due to their ability to learn from real data and adjust to complex models with ease. These techniques have landed in the field of adaptive optics, and are being used to correct distortions caused by atmospheric turbulence in astronomical images obtained by ground-based telescopes. Advances for multi-object adaptive optics are considered here, focusing particularly on artificial neural networks, which have shown great performance and robustness when compared with other artificial intelligence techniques. The use of artificial neural networks has evolved to the extent of the creation of a reconstruction technique that is capable of estimating the wavefront of light after being deformed by the atmosphere. Based on this idea, different solutions have been proposed in recent years, including the use of new types of artificial neural networks. The results of techniques based on artificial neural networks have led to further applications in the field of adaptive optics, which are included in here, such as the development of new techniques for solar observation or their application in novel types of sensors

    Rationale and design of the SI! Program for health promotion in elementary students aged 6 to 11 years: A cluster randomized trial

    Full text link
    Unhealthy habits in children are increasing at an alarming rate. The school provides a promising setting for effective preventive strategies to improve children's lifestyle behaviors. The SI! Program is a multilevel multicomponent school-based educational intervention aimed at all stages of compulsory education in Spain. Here, we present the design of the SI! Program for Elementary School cluster-randomized controlled trial, targeting children aged 6 to 11 years. This trial aims to study the impact of different timings and intensities of exposure to SI! Program activities on elementary school children and their immediate environment (parents/caregivers, teachers, and school). The trial includes 1770 children from 48 public elementary schools in Madrid (Spain), together with their parents and teachers. Schools and their children were randomly assigned to the intervention group (the SI! curriculum-based educational program over 3 or 6 academic years) or to the control group (standard curriculum). The primary outcomes are the change from baseline at 3-year and 6-year follow-up in children's scores for knowledge, attitudes, and habits (KAH) and health factors (blood pressure, height, weight, waist circumference, and skinfold thickness). Secondary outcomes include 3-year and 6-year changes from baseline in lifestyle questionnaire scores for parents/caregivers and teachers, and in the school environment questionnaire. The overarching goal of the SI! Program is to provide an effective and sustainable health promotion program for the adoption of healthy behaviors in children. The present trial will address the impact and the optimal timing and duration of this educational intervention in the elementary school setting. (Am Heart J 2019;210:9-17.)This study is partly funded by the Daniel & Nina Carasso Foundation and the la Caixa Foundation (LCF/PR/CE16/ 10700001). This study forms part of a project that has received funding from the European Union Horizon 2020 research and innovation programme under Marie Skłodowska- Curie grant agreement No. 707642 and from the American Heart Association under grant No. 14SFRN2049031
    corecore